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Motivating example – case study in developing targeted retention strategies for HIV trials 

Identifying important predictors of potentially avoidable dropout
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“… Two approaches to the problem are to reduce the frequency of missing data in the 

first place and to use appropriate statistical techniques that account for the missing data. 

The former approach is preferred,…

Prevention of Drop-out and Loss to Follow-up
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• NRC 2010 report contains 4 recommendations related to minimizing missing data, e.g.,

– Recommendation 2: Investigators, sponsors, and regulators should design clinical trials 

consistent with the goal of maximizing the number of participants who are maintained on 

the protocol-specified intervention until the outcome data are collected.

– Recommendation 6: Study sponsors should explicitly anticipate potential problems of 

missing data. In particular, the trial protocol should contain a section that addresses 

missing data issues, including the anticipated amount of missing data, and steps taken 

in trial design and trial conduct to monitor and limit the impact of missing data.

Prevention Theme in the NRC 2010 Report



4

Foster adherence to treatment and continuing study participation

without compromising safety and wellbeing of patients

Minimize participants’ burden and inconvenience

Flexible consenting, e.g., with an option for reduced assessment burden

Use technology to facilitate visit scheduling/reminders

Offer an extension study with experimental drug

Offer treatments to manage non-critical side effects

Flexible dosing, if possible

Consider “enriched” design (e.g., with a run-in period) or randomized withdrawal design

Work with patients and investigators to convey importance of full participation 

Do not encourage discontinuation in case of protocol violations

Outline effective communication and follow-up strategies in the protocol

Use historic retention rates (in addition to historic enrollment rates) for site selection

Retention strategies, including targeted strategies for subjects at high risk of loss to FU

Some Prevention Strategies in Trial Design and Conduct
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• On-trial elicitation of intention to continue

• “ …investigators and site personnel can collect information on which participants are at risk 

for dropping out and why: formal “intent-to-attend” questioning may help to identify reasons 

for dropout (see, e.g., Leon et al., 2007) and may yield useful covariates in missing data 

models. Factors influencing decisions to participate include: 

– (i) time and duration of visits, 

– (ii) need for assistance with transportation or child care, 

– (iii) need for reminders, 

– (iv) problems in relations with the staff, 

– (v) problems with blood drawing or other procedures, 

– (vi) side effects, and 

– (vii) perceptions of intervention efficacy.”

Prevention Theme in the NRC 2010 Report (Cont’d)
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NRC 2010 contains a section 

“UNDERSTANDING THE CAUSES AND DEGREE OF DROPOUTS IN CLINICAL TRIALS”

“A crucial issue that sponsors must wrestle with in planning a clinical trial is … how much 

could be reduced through the use of various techniques … and consequently if they 

implement these various techniques, what degree of missingness is likely to remain. 

… Information from previously collected clinical studies would help in answering these 

questions.”

Prevention Theme in the NRC 2010 Report (Cont’d)
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LaVange & Permutt (2015): 

“We also believed that too much was being asked of statistical analysis. Trialists were 
sometimes complacent about missing data, assuming that the problem would be 
satisfactorily addressed in analysis. We hoped that a frank discussion by expert 
statisticians of the limitations of statistics would encourage improvements in the 
design and conduct of trials to lessen the need for analytical solutions based upon 
unproven assumptions.”

Missing Data - Not Just a Statistician’s Problem
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Seems like ClinOps issues, why are we talking about it here?

Prevention of Missing Data - Is it a statistician’s job too?
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A successful case study by GSK to develop a proactive plan for focused retention efforts 

in HIV trials

From previously completed studies, identify:

Treatment-related / unavoidable treatment discontinuations, e.g., adverse events, protocol-

defined insufficient efficacy

Potentially avoidable drop-out, e.g., loss to follow-up, subject decision, non-compliance with 

protocol, etc.

 Identify demographic characteristics that are strongly correlated with potentially 

avoidable drop-out

Develop patient retention strategies focused on patients at high risk of potentially 

avoidable drop-out

Proactive Strategies for Patient Retention
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Pooled analysis of 4 studies in HIV previously completed by GSK

Overall 24% discontinuation rate, ~17% potentially avoidable drop-out

 Identified several significant predictors of potentially avoidable drop-out

Ethnicity: Non-white at higher risk than white

HIV transmission mode: IV drug use and heterosexual at higher risk vs others

Age: Younger subjects (< 38 years) at higher risk

GSK Case Study – Retrospective Analysis
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Pooled analysis of 4 studies in HIV previously completed by GSK

Overall 24% discontinuation rate, ~17% potentially avoidable drop-out

 Identified several significant predictors of potentially avoidable drop-out

Ethnicity: Non-white at higher risk than white

HIV transmission mode: IV drug use and heterosexual at higher risk vs others

Age: Younger subjects (< 38 years) at higher risk

Action with future studies

 “Typical profile” of a future trial subject at higher risk of dropout

Development of country-specific and site-specific plans targeted to high-risk subjects

Effect in future studies

 In a new Phase IIb trial: 2% non-treatment related dropout after 48 weeks (vs ~17% 

historical)

Evaluation is ongoing in a Phase III program…

GSK Case Study – Prevention in Future Trials
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Increased efficiency / power / confidence in trial conclusions

With consistent reductions of drop-out, can potentially design future trials with 

smaller sample sizes, e.g.,

Base case: no prevented dropout, habitual dropout rate.

GSK Case Study - Potential Impact of Increased 

Retention
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Explore and apply advanced methods for identification of demographic and baseline 

characteristics that are strongly correlated with potentially avoidable drop-out

Our focus is on variable selection to assess which predictors are important and to 

glean the general shape of their relationship with the probability of dropping out

Our goal is not to build a prediction model that will be used in the future to predict the 

odds of potentially avoidable dropout on individual future patients

Rather, we want to understand the key elements of the mechanism behind such 

dropouts, so as to be able to prevent/reduce them in the future

We will consider potential predictors individually and their 2-way interactions, so that 

relatively simple, interpretable subject profiles can be formulated for targeted retention 

strategies

Objectives for This Presentation (…the rest of it)
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Methods Considered in This Presentation

Logistic 
regression 
with step-
wise 
selection

Lasso

Decision trees 
(CART)

Random 

forest

Gradient 
Boosting 
Machines

“Traditional” in statistics

Machine learning:

Penalized regression - improving 

on parametric regression

Machine learning

- Nonparametric, recursive partitioning

- Basic building blocks for more sophisticated methods

Machine learning  

- Ensemble methods based on tree models

- “Black box” methods

We will extract from a black box:

- Variable importance

- Interactions

- Low-dimensional visualizations
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Patterned after typical studies in Type II diabetes

600 subjects in all treatment groups combined

 510 (85%) – completers

 90 (15%) - potentially avoidable dropout

Note: unavoidable dropout is not included in this analysis 

14 candidate baseline predictors:

AGE, SEX, RACE, ETHNIC 

BLBMI, H_OBESITY – baseline BMI and history of obesity

BLSYSBP, BLDIABP – baseline blood pressure

H_NEUROPATHY, C_NEPHROPATHY – history of neuropathy and comorbid nephropathy

BLHBA1C, BLFPG – baseline HbA1c and fasting plasma glucose

BLEGFR – baseline EGFR (>=90 – normal)

YSD5CAT - <5 years vs >=5 years since diagnosis

 Interactions may be important, but don’t know which in advance: 

 91 potential 2-way interaction terms (given 2 categories of RACE)

Total: 105 potential predictors

Example Dataset
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In the GSK study:

Cox proportional hazards model for time to potentially avoidable dropout was used to 

identify significant predictors among 6 candidates

One-year predicted risks of potentially avoidable dropout were calculated from the 

model for each combination of significant factors.

Logistic regression to model a binary variable for potentially avoidable dropout using 

stepwise variable selection, e.g., based on Akaike’s information criterion (AIC) or 

Bayesian Information Criterion (BIC)

(Generalized) linear models are sometimes thought to be a preferred method because 

of their interpretability

“Traditional” Statistical Variable Selection Approaches
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Some of the stepwise selection drawbacks:

 subjective choices for the selection/elimination significance levels

model uncertainty - multiple different parameter combinations may have a similar fit to the data 

 a greedy method - picks the variable which is the current "winner" in explaining residual variance

 predictors can appear significant or not, depending on what other predictors are in the model 

 instability – small changes in the data may lead to drastic changes in results

 dangers of multiple testing (p-values do not have usual interpretation as they don’t account for 

selection process)

Logistic Regression with Stepwise Variable Selection
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Some of the stepwise selection drawbacks:

 subjective choices for the selection/elimination significance levels

model uncertainty - multiple different parameter combinations may have a similar fit to the data 

 a greedy method - picks the variable which is the current "winner" in explaining residual variance

 predictors can appear significant or not, depending on what other predictors are in the model 

 instability – small changes in the data may lead to drastic changes in results

 dangers of multiple testing (p-values do not have usual interpretation as they don’t account for 

selection process)

AIC and BIC are some of the criteria that can be used for selection decisions at each step

AIC=-2 logL + 2p

BIC=-2 logL + p*log(n)

where p is the number of parameters in the model (penalty for increased model complexity, 

discourages overfitting) and n (in BIC) is the sample size

 provide the means to compare models in terms of their fit to the data, favoring the models with fewer 

parameters

 removes the need for the user to specify significance levels (although AIC is equivalent to ~15.7%)

Logistic Regression with Stepwise Variable Selection
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Logistic regression using stepwise (both directions) selection with AIC

Number of variables selected: 39

y.train ~ SEX + ETHNIC + AGE + YSD5CAT + BLDIABP + BLFPG + BLHBA1C + BLEGFR + 

`SEX:AGE` + `SEX:YSD5CAT` + `SEX:BLSYSBP` + `SEX:BLFPG` + 

`ETHNIC:AGE` + `ETHNIC:BLBMI` + `ETHNIC:BLDIABP` + `ETHNIC:BLFPG` + 

`ETHNIC:H_NEUROPATHY` + `ETHNIC:RACE.WH`+ 

`AGE:BLSYSBP` + `AGE:BLFPG` + `AGE:BLHBA1C` + `AGE:BLEGFR` + 

`BLBMI:YSD5CAT` +`BLBMI:BLSYSBP` + `BLBMI:BLDIABP` + `BLBMI:H_NEUROPATHY` + 

`YSD5CAT:BLSYSBP` + `YSD5CAT:BLDIABP` + `YSD5CAT:BLEGFR` + 

`BLSYSBP:BLDIABP` + `BLSYSBP:BLEGFR` + `BLSYSBP:H_OBESITY` + 

`BLDIABP:BLFPG` + `BLDIABP:BLHBA1C` + `BLDIABP:BLEGFR` + `BLDIABP:H_NEUROPATHY` + 

`BLHBA1C:H_NEUROPATHY` +

`BLEGFR:H_NEUROPATHY`

Results from Stepwise Selection on Example Dataset

R package “MASS”

logistic.base<-glm(y.train~.,family=binomial(link='logit'),data=temp.train.scaled)

logistic.step<-stepAIC(logistic.base, direction="both")
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Logistic regression using stepwise (both directions) selection with BIC

Number of variables selected: 39

y.train ~ SEX + ETHNIC + AGE + YSD5CAT + BLDIABP + BLFPG + BLHBA1C + BLEGFR + 

`SEX:AGE` + `SEX:YSD5CAT` + `SEX:BLSYSBP` + `SEX:BLFPG` + 

`ETHNIC:AGE` + `ETHNIC:BLBMI` + `ETHNIC:BLDIABP` + `ETHNIC:BLFPG` + 

`ETHNIC:H_NEUROPATHY` + `ETHNIC:RACE.WH`+ 

`AGE:BLSYSBP` + `AGE:BLFPG` + `AGE:BLHBA1C` + `AGE:BLEGFR` +

`BLBMI:YSD5CAT` +`BLBMI:BLSYSBP` + `BLBMI:BLDIABP` + `BLBMI:H_NEUROPATHY` + 

`YSD5CAT:BLSYSBP` + `YSD5CAT:BLDIABP` + `YSD5CAT:BLEGFR` + 

`BLSYSBP:BLDIABP` + `BLSYSBP:BLEGFR` + `BLSYSBP:H_OBESITY` + 

`BLDIABP:BLFPG` + `BLDIABP:BLHBA1C` + `BLDIABP:BLEGFR` + `BLDIABP:H_NEUROPATHY` + 

`BLHBA1C:H_NEUROPATHY` + 

`BLEGFR:H_NEUROPATHY`

Results from Stepwise Selection on Example Dataset

R package “MASS”

logistic.base<-glm(y.train~.,family=binomial(link='logit'),data=temp.train.scaled)

logistic.step<-stepAIC(logistic.base, direction="both“, k=log(nrow(temp.train.scaled))
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With a large number of possibly correlated predictors, 

a regression model can indicate how well the combination of predictors predicts the 

outcome variable, BUT 

it may not give valid results about any individual predictor, about which predictors are 

redundant with respect to others, or their relative importance

To design a targeted retention strategy, we need to narrow down the set of important 

predictors 

Results from Stepwise Selection
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What’s attractive about them?

Good performance in the presence of a large number of candidate predictors

Parametric or non-parametric, flexible, some can “build in” interactions naturally

Reservations against ML

Some approaches are thought of as “black boxes” – lack of interpretability

“Black art” to some statisticians

So what?

We will try to dissect the black boxes: variable importance, explore interactions, low-

dimensional visualizations

Easily available in R, some in SAS

Machine (Statistical) Learning (ML) Approaches
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 Learn a model = estimate a model = identify a model (element of discovery)

 Learning algorithm = method used to estimate parameters of a model

 Training set = dataset used for model estimation

 Test set = data used to evaluate predictive accuracy of an estimated model, typically not included in 

the training set

 Tuning parameters = meta-parameters that determine some aspects of the learning algorithm which 

the user needs to specify (strategies exist to identify/learn optimal settings for the data at hand)

 K-fold cross-validation: technique to evaluate predictive accuracy of a model or to select settings of 

tuning parameters:

Divide (partition) the training set into K folds (sets), typically randomly

Run learning K times, each time using all data except the kth fold for training, and perform model 

evaluation on the kth fold as the test set. 

Average performance measure over K test sets.

For parameter tuning, perform the above steps with different parameter settings and select the 

one(s) providing the best average performance over K test sets.

Some Statistical Learning Jargon
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Variable importance (VI) is a measure of the relative importance or contribution of a 

variable to predicting the response

VI is used in many machine learning approaches where a single variable may contribute 

multiple times in different parts of the model – it provides a single score presenting its 

overall importance 

VI captures both the main effect of the variable and its involvement in interaction effects 

with other variables

VI is defined in different ways that reflect the construction of specific types of learners … 

more in a bit

Variable Importance
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Penalized regression is a parametric method that was developed to address some 

difficulties with the use of traditional regression methods in statistics in the presence of 

many predictors 

 It can deal with a large number of noise covariates among candidate predictors 

minimizing their impact on estimation

 It is a less greedy approach compared to stepwise selection: 

Loosely speaking, the idea is to "restrict" the best predictor by allowing it to explain 

only a portion of residual variance, i.e. 

The predictor is not included in the model with its "full" LS coefficient but with the 

coefficient shrunk down to 0, giving more chance to other predictors later to kick in and 

explain what is left of the variance.

Parametric Machine Learning Methods
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 Error (loss) function is minimized under a constraint that penalizes for model complexity and/or large 

absolute values of coefficients

 𝜷 = 𝑎𝑟𝑔 min𝜷  𝑖=1
𝑁 (𝑦𝑖 − 𝒙𝑖

𝑇𝜷)2 , subject to 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝜷 < 𝑘.

Methods differ in terms of the penalty 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝜷 that they impose:

 ridge regression (Hoerl and Kennard, 1970), 

 lasso (Tibshirani, 1996), adaptive lasso (Zou, 2006)

 elastic net (Zou and Hastie, 2005)

The two last methods would shrink estimated model coefficients either exactly to zero (effectively 

eliminating the variable from the model) or to some non-zero values.

The penalty causes parameter estimates to be biased but also decreases their variance – thus, 

variance-bias tradeoff. 

Amount of shrinkage is determined by tuning parameters. Need to employ a tuning method to 

choose the optimal setting of the these parameters, e.g., 

 cross-validation, or 

AIC/BIC applied to the sequence of estimated models under varying tuning parameter

Penalized Regression
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 Penalty (lambda) versus coefficients plot when fitting main effects only

Results from Lasso on Example Dataset

Coefficients as lambda decreases
(Intercept) 0 -1.7346 -1.69555 -1.69124 -2.02151 -1.97356 -1.24498

SEX 1 0 0 0 0 0 0

ETHNIC 2 0 0 0.07366 1.219443 1.291074 1.294679

AGE 3 0 0 0 0 0 0

BLBMI 4 0 0 0 0 0 0

YSD5CAT 5 0 0 0 0 0 0

BLSYSBP 6 0 0 0 0 0 0

BLDIABP 7 0 0 0 0 -0.30587 -1.36651

BLFPG 8 0 0 0 0 0 0

BLHBA1C 9 0 0 0 0 0 0

BLEGFR 10 0 0 0 0 0 0

C_NEPHROPATHY 11 0 0 0 0 0 0

H_NEUROPATHY 12 0 0 0 0 0 0.015474

H_OBESITY 13 0 -0.12786 -0.26599 -1.99742 -2.21154 -2.32229

RACE.WH 14 0 0 0 0.026115 0.197378 0.245308
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 Lasso with cross-validation to select the penalty parameter minimizing the cross-validation error

Number of variables selected, on average, when minimizing misclassification error: 64

Number of variables selected, on average, when maximizing AUC: 64

Order in which variables are retained (with non-zero coefficients) as the penalty increases:

H_OBESITY 

ETHNIC:H_NEUROPATHY 

ETHNIC:RACE.WH 

H_NEUROPATHY:RACE.WH 

SEX:YSD5CAT 

ETHNIC:AGE 

SEX:ETHNIC 

ETHNIC:YSD5CAT 

BLDIABP:H_NEUROPATHY 

SEX:C_NEPHROPATHY 

YSD5CAT:C_NEPHROPATHY 

SEX:H_NEUROPATHY

BLSYSBP:BLDIABP 

SEX:BLEGFR 

ETHNIC:BLBMI 

BLSYSBP:RACE.WH 

AGE:RACE.WH

…

Results from Lasso on Example Dataset

R package “glmnet”

lasso.cvfit<-cv.glmnet(x=as(pred.matrix.train.num.mat,"dgCMatrix"), y=y.train, 

standardize=FALSE, family = "binomial", type.measure=“class”, nfolds=5, alpha=1)
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We will illustrate the use of

Random forests

Gradient Boosting Machines

… both use decision trees as building blocks, so first some background on CART

“Black Box” Machine Learning Methods
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Decision Trees, CART

CART – Classification and Regression Trees

Visualized as decision graphs with nodes, splits, 

branches, leaves.

Each branch culminates at a leaf node and defines 

a region in the 𝑝-dimensional input space.

A leaf node (region) is assigned a predicted 

outcome – a numeric constant for  regression or a 

class label for classification.

 Interactions between variables are naturally 

represented along each branch and learnt from 

data.
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 Learning a tree-based model involves several steps and various methods are available for each:

How to choose splits at each node

How to decide when splitting should stop

How to choose the optimal size of the tree (model complexity)

How to assign a prediction value at each leaf

 Individual trees can be very unstable: small changes in training data may lead to trees with very 

different splits. 

One way of dealing with this problem is to use ensemble learning techniques

Decision Trees, CART

CART – Classification and Regression Trees

Visualized as decision graphs with nodes, splits, 

branches, leaves.

Each branch culminates at a leaf node and defines 

a region in the 𝑝-dimensional input space.

A leaf node (region) is assigned a predicted 

outcome – a numeric constant for  regression or a 

class label for classification.

 Interactions between variables are naturally 

represented along each branch and learnt from 

data.
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Hansen and Salamon (1990) showed that predictions made by a combination of classifiers can be 

more accurate than predictions from a single classifier as long as each base learner is accurate and 

the classifiers are diverse. 

 Build multiple, relatively simple prediction models - base models or learners, weak learners

Weak learners: capable of prediction accuracy at least slightly above random guessing

Combine weak learners into one overall model (combining their strengths), e.g., by (weighted) voting 

or averaging. 

Diversity can be achieved in different ways:

different classifiers make different errors on new data, so that if their errors are uncorrelated, the 

majority vote or averaging will likely lead to a correct overall classification – idea behind random 

forest

adaptively focus each new weak learner on the observations that were poorly predicted by the 

previous learners in the ensemble – idea behind boosting methods

Ensemble Learning – General Idea
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Image from: https://www.youtube.com/channel/UC95bRAbJdLyXGbMfNemr9lQ/

Random Forests
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Random forest is an ensemble learning method which builds on two ideas:

 bagging (Breiman, 1996) – ensemble of unpruned trees (no restriction on the size of the trees) 

learned from bootstrap samples of the training data, and 

 a random feature selection during tree construction 

Bagging – a contraction of bootstrap aggregation. 

Form B bootstrap datasets from the original data and fit a model  𝑓𝑏 𝒙 , 𝑏 = 1, … , 𝐵 to each. 

Aggregate all predictions into a single bagged prediction, e.g.,  𝑓𝑏𝑎𝑔 𝒙 =
1

𝐵
 𝑏=1

𝐵  𝑓𝑏 𝒙

Why bagging improves performance of base learners, e.g., trees (low bias, high variance)?

Reduces the variance component of the generalization error.

 Leaves the bias component unchanged, thus improves the predictive accuracy in general. 

Typically, to ensure the low bias, averaging is applied to full-sized (unpruned) trees. 

Random Forest
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 For b = 1 to B:

Draw a bootstrap sample of the same size as the training data with replacement

Learn an unpruned tree on the bootstrap sample by recursively repeating the following steps until 

stopping criteria are met

Randomly select m variables from all p predictors (m < p) 

Find the best split candidate from those m variables

Split the node into two children nodes with the best candidate

Combine the predictions of B trees

Majority vote or average probability for classification.

Average for regression.

Random Forest – Key Elements of Learning Algorithm
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More accurate than an individual tree model (tree assumes a piecewise constant true model with 

non-smooth boundaries which is rarely the case)

Runs efficiently on large data sets, including many predictors and interactions

Unbiased estimate of the generalization (prediction) error based on out-of-bag error evaluation 

Provides variables importance scores 

Some interpretability can be achieved by estimating the marginal effect of a variable (or interaction) 

on outcome using low-dimensional visualizations

Random Forests - Advantages
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 A variable 𝑋𝑖 is selected for a split in a tree node if it leads to a reduction in an “impurity” criterion 

(e.g., Gini index for classification, residual sum of squares in regression).

 Variable importance of 𝑋𝑖 in an individual tree: sum of impurity reductions over all nodes where it’s 

used for a split

 Variable importance of 𝑋𝑖 in a random forest: sum of variable importance values over all trees

Random Forests – Variable Importance –

Reduction in Impurity

𝑋𝑖 is selected as 

splitting variable

𝑉𝐼1(𝑋𝑖) =  𝐼𝑚𝑝𝑘 (𝑋𝑖)𝐼(𝑋𝑖 ∈ 𝑁𝑜𝑑𝑒 𝑘) 𝑉𝐼𝐵(𝑋𝑖)

…

𝑉𝐼𝑅𝐹(𝑋𝑖)= 𝑏=1
𝐵 𝑉𝐼𝑏(𝑋𝑖)
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 “Permutation importance” evaluates the reduction in predictive accuracy (based on the same fitted 

forest) after a random permutation of the values of the variable across all training samples: 

 randomly permuting values of a variable strongly associated with response is expected to lead to 

substantial decreases in prediction accuracy 

 Predictive accuracy, before and after permutation, is evaluated using the out-of-bag data:

When drawing bootstrap samples with replacement from the original data, on average, 1/3 of 

records are not included in a given bootstrap sample (excluded records = out-of-bag sample)

Each tree in a random forest is estimated from a bootstrap sample (in-bag) and evaluated for 

predictive accuracy on the corresponding out-of-bag sample – ensures an unbiased estimate of 

prediction error. 

Note that the RF is not refit after permuting variable values - the same RF model (i.e., without 

refitting) is used to predict values after permutation

Random Forests – Variable Importance –

Permutation Importance
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Random Forests – Impurity and Permutation VI for 

Example Dataset

R package “randomForest”

rf<-randomForest(pred.matrix.train, as.factor(y.train), ntree=50000, importance=TRUE)

VI.Perm=importance(rf, type=1) ### type=1: Permutation VI

VI.Impur=importance(rf, type=2) ### type=2: Impurity VI
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 Selecting a variable and a value for a split: CART performs an exhaustive search over all possible 

variables and their values for splits optimizing a measure of node impurity and selects the best 

variable/split value. 

 Variable selection bias: favoring covariates with many possible splits – continuous or categorical with 

many categories. 

 Variable importance based on impurity reduction in CART inherits variable selections bias

Conditional trees select variables in an unbiased manner by estimating a regression relationship 

using binary recursive partitioning in a conditional inference framework. A splitting variable is selected 

first, independently of the splitting value (without an exhaustive search over all splits for all variables).

Random forest with conditional trees is available in the R package “party”.

Random Forest – Dealing with Variable Selection Bias
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 Permutation VI is not robust when predictors are correlated.

Permutation for 𝑋𝑖 is done permuting values of 𝑋𝑖 against outcome 𝑌 and remaining predictors 𝑍 =
𝑋1, … , 𝑋𝑖−1, 𝑋𝑖+1 … . 𝑋𝑝

High variable importance may be caused either by breaking the true correlation between 𝑋𝑖 and 𝑌 or by 

breaking a spurious correlation between 𝑋𝑖 and 𝑌 induced through correlation between 𝑋𝑖 and some of 

the true predictors of 𝑌 in 𝑍.

Correlated predictors “artificially” appear more important than uncorrelated ones.

Random Forest – Dealing with Correlated Predictors –

Conditional Variable Importance
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Conditional VI (Strobl et al., 2008): the goal is to measure importance in the spirit of conditional 

correlation, i.e., measure association between 𝑋𝑖 and 𝑌 given a correlation structure between 𝑋𝑖 and 𝑍:

𝑋𝑖 is permuted only within groups of records with 𝑍 = 𝑧 in order to preserve the correlation structure. 

I.e., if 𝑋𝑖 is related to 𝑌 through 𝑍, this association is preserved in the permuted data

Permutation is done within a grid defined by (a subset) of variables and is tree-specific

Define grids based on the partition of the predictor space induced by a tree – it has already been 

identified as part of tree learning

A subset of variables to be conditioned on (to define the grid) can be chosen as those that have a 

correlation with 𝑋𝑖 that is larger than a threshold.

Random Forest – Dealing with Correlated Predictors –

Conditional Variable Importance

From: Strobl et al., 2008 BMC Bioinformatics 2008, 9:307
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Random Forests – Conditional VI for Example Dataset

R package “party”

my.mtry=floor(sqrt(ncol(data.train)-1))

crf<-cforest(as.formula(form.train.factor), data=data.train,

controls=cforest_control(teststat="quad", testtype="Univariate", mincriterion=0, 

maxdepth=0, mtry=my.mtry, ntree=250, replace=FALSE, fraction=0.632,trace=FALSE))

crf.vi<-varimpAUC(crf, conditional=TRUE, OOB=TRUE, mincriterion=0.5, threshold=0.7)
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If predictors are all of the same type and uncorrelated – use either impurity or 

permutation VI

If predictors are not all of the same type but uncorrelated – use permutation VI

If predictors are correlated – use conditional VI

Examine ranking of variables when running with different random seeds. If it changes –

increase the maximum number of trees in the random forest.

Summary of VI Measures in Random Forest
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 VI scores are relative measures, but how do we know 

any predictors are important?

 Test a global null hypothesis of no predictor effect

Permutation test: For each 𝑏 = 1, … , 𝐵

 permute outcomes, 𝑦𝑝 𝑛 , against subjects’ 

covariate values 𝒙𝑛, where 𝑝 𝑛 is a random 

permutation of integers 1, … , 𝑁;

 estimate “cforest” based on null (permuted) data;

 compute maximum conditional VI score, 𝑚𝑎𝑥𝐶𝑉𝐼0𝑏, 

over all predictors

Compute p-value as the proportion of 𝑚𝑎𝑥𝐶𝑉𝐼0𝑏

scores which are larger than 𝑚𝑎𝑥𝐶𝑉𝐼𝑜𝑟𝑖𝑔

Other useful summaries of the empirical null 

distribution:

Threshold= 𝑚𝑎𝑥𝐶𝑉𝐼0 + 𝑘 𝑉𝑎𝑟(𝑚𝑎𝑥𝐶𝑉𝐼0), where 

𝑘 = Φ−1(1 − 𝛼)

 95% Upper Confidence Limit (UCL) from the 

empirical distribution

 For the example dataset, global test p-value< 0.001

Random Forests – Global Null Test for Conditional VI

𝑚𝑎𝑥𝐶𝑉𝐼0 + 𝑘 𝑉𝑎𝑟(𝑚𝑎𝑥𝐶𝑉𝐼0)

95% UCL of 𝑚𝑎𝑥𝐶𝑉𝐼0
(permutation-based)
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The weak learner (e.g., a short tree – CART with small depth, often a “stump”) is applied 𝑀 times to 

the modified – re-weighted – training data sets. 

A basic idea: 

 At iteration 𝑚 = 1, a classifier  𝑓1 𝒙 is estimated on data samples with equal weights  𝑤𝑖 =  1 𝑁. 

 At subsequent iterations, 𝑚 = 2, 3, … , 𝑀, weights are increased for those observations that were 

misclassified by the classifier from the previous iteration,  𝑓𝑚−1 𝒙 , and decreased for observations 

that were classified correctly. 

 As the algorithm progresses, successive classifiers focus on “difficult” cases missed by previous 

classifiers. 

 The overall classification is obtained as, e.g.,,  𝑓 𝒙 = 𝑠𝑖𝑔𝑛  𝑚=1
𝑀 𝛼𝑚

 𝑓𝑚 𝒙 ,

where 𝛼𝑚 are the weights determining the contribution of each learner based on its weighted 

training error. 

Boosting can dramatically increase the accuracy of very weak single classifiers (those that are just 

slightly better than random guessing) and outperform large single classification trees. 

Boosting
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 Initialize the first tree model as 𝑓0 𝒙 = argmin  𝑖=1
𝑁 𝐿(𝑦𝑖 , 𝑓(𝒙)), where 𝐿(𝑦𝑖 , 𝑓) is a loss function, 

e.g., exponential loss for binary classification (similar to binomial likelihood in logistic regression). 

Different loss functions are used depending on the type of outcome.

For each m = 1, … , 𝑀:

 For each observation i, compute “pseudo residuals”

𝑟𝑖𝑚 = −
𝜕𝐿(𝑦𝑖,𝑓(𝒙𝑖))

𝜕𝑓(𝒙𝑖) 𝑓=𝑓𝑚−1

Randomly select a subset of observations without replacement

Use the selected 𝑟𝑖𝑚 as targets to fit a tree with terminal nodes 𝑅𝑘𝑚

Determine fitted values in terminal nodes to minimize the overall loss as

𝛾𝑘𝑚 = argmin𝛾  

𝑥𝑖∈𝑅𝑘𝑚

𝐿(𝑦𝑖 , 𝑓 𝒙𝑖 + 𝛾)

Update 𝑓𝑚 𝒙 = 𝑓𝑚−1 𝒙 + 𝜈  𝑘 𝛾𝑘𝑚𝐼(𝒙 ∈ 𝑅𝑘𝑚), where 𝜈 is a shrinkage parameter (controlling 

the speed of learning to reduce overfitting)

Meta-parameters 𝑀 and 𝜈 can be selected using cross-validation.

Gradient Boosting Machines (GBM) with Trees
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Using a tree as a base learner and having varying tree depths allows us to assess the presence of 

interaction effects in the data. 

GBM lends itself to an ANOVA-type decomposition of the total variance associated with response into 

variance attributable to marginal effects, 2-way interaction effects, etc. For example, 

 if depth=1, only main effects can be captured and the fit can be decomposed into

𝑓 𝒙 =  

𝑗

𝑓𝑗 (𝑥𝑗)

 if depth=2, two-way interactions can be captured and the fit can be decomposed into

𝑓 𝒙 =  

𝑗

𝑓𝑗 (𝑥𝑗) +  

𝑗𝑘

𝑓𝑗𝑘 (𝑥𝑗 , 𝑥𝑘)

Freidman and Popescu (2005) developed the H statistic as a measure of interaction strength:

 if 𝑋𝑗 and 𝑋𝑘 don’t interact with each other, then function 𝑓𝑗𝑘(𝑥𝑗, 𝑥𝑘) ≡ 0

 This can be teased out from respective partial dependence (PD) functions reflecting main effects of 

𝑥𝑗 and 𝑥𝑘 or joint effect of 𝑥𝑗 , 𝑥𝑘, after averaging out the rest of predictors 

 PD’s will be explained further, they are denoted with capital 𝐹’s, e.g. 𝐹𝑗 𝑥𝑗 , 𝐹𝑘 𝑥𝑘 , 𝐹𝑗𝑘 𝑥𝑗, 𝑥𝑘 .

Exploring Interactions with GBM –

Friedman’s H Statistic
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Under no interaction between 𝑥𝑗 , 𝑥𝑘, joint PD can decomposed as a sum of PD’s for main effects

𝐹𝑗𝑘 𝑥𝑗 , 𝑥𝑘 = 𝐹𝑗(𝑥𝑗)+𝐹𝑘(𝑥𝑘)

 the H statistic is related to the fraction of variance of 𝐹𝑗𝑘 𝑥𝑗, 𝑥𝑘 that is not captured by 

𝐹𝑗(𝑥𝑗)+𝐹𝑘(𝑥𝑘) and ranges between 0 and 1

H statistics are constructed by using estimated PD (see next slides)

𝐻𝑗𝑘
2 =

 𝑖=1
𝑁  𝐹𝑗𝑘 𝑥𝑖𝑗 , 𝑥𝑖𝑘 −  𝐹𝑗 𝑥𝑖𝑗 −  𝐹𝑘(𝑥𝑖𝑘)

2

 𝑖=1
𝑁  𝐹𝑗𝑘

2 𝑥𝑖𝑗 , 𝑥𝑖𝑘

 it can be used with interaction effects of any order

 it is a relative measure, not comparable to testing significance of regression coefficients

How do we know if it’s significant?

Exploring Interactions with GBM –

Friedman’s H Statistic (Cont.)
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For binary response use a parametric bootstrap procedure to generate a null distribution of H – under no 

interaction effect (Freidman and Popescu, 2005)

Generate artificial data containing only additive effects as 

 𝑦𝑛~𝐵𝑒(𝑓𝐴 𝒙𝑛 )

where 𝑓𝐴 𝒙𝑛 is a closest fit with no interaction effects (e.g., estimate from GBM with trees of depth 1).

Note that nonlinear effects can still be captured by a boosting machine with trees of depth 1 because of 

the sequential nature of the boosting algorithm.

Fit a full model (e.g., allowing depth=2) to the artificial (no interaction) data and compute the H statistics.

Repeat for many permutations 𝑝 𝑛 to obtain an empirical null distribution of H.

Compute significance of the H statistic estimated from the original data as the proportion of null H 

values that are the same or larger than the observed from original data. 

Null distribution can be computed for the H statistic corresponding to each pair of variables as well as 

the maximum over all variables.

Maximum can be used for an overall test of presence of any interactions. 

Friedman’s H Statistic – Significance



51

 The p-value for the global test (maximum H statistic) = 0.004

 The most significant interactions for example dataset 

(p-values are adjusted using the Benjamini-Hochberg method for controlling a false discovery rate):

BLEGFR*BLDIABP: p-value < 0.001

BLDIABP*H_NEUROPATHY: p-value < 0.001

BLDIABP*BLFPG: p-value= 0.0364 

BLDIABP*AGE: p-value= 0.0214

AGE*ETHNIC: p-value < 0.001

AGE*SEX: p-value < 0.001

Exploring Interactions in Example Dataset

R package “gbm”

gbm.trees<-gbm(as.formula(form.train), data=useddata.train,

distribution="bernoulli", interaction.depth = 2, n.trees=50000, shrinkage=0.001, n.minobsinnode=35,

cv.folds=5, train.fraction=1, verbose=FALSE)

interact.gbm(gbm.trees, useddata.train, i.var=int.vars)
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 Variable importance can help us assess which variables deserve attention, but we also need to 

understand how they are related to the outcome.

 Partial dependence plots (PDP) (Friedman, 2001): low dimensional graphs of the relationship 

between the outcome and a subset of predictors of interest while accounting for the average effect of 

other predictors in the model.

 PDPs aid in interpreting relationships represented by complex, “black box” models.

 Let 𝒁𝑠 be a subset of the predictors of interest (typically 1 to 3) and 𝒁𝑐 - its compliment.

Partial dependence of outcome on 𝒁𝑠: 𝐹𝑠(𝒛𝑠) =  𝑓(𝒛𝑠, 𝒛𝑐) 𝑝𝑐 𝒛𝑐 𝑑𝒛𝑐, where 𝑝𝑐 𝒛𝑐 is 

marginal density of 𝒁𝑐.

 Partial dependence function can be estimated from the training data by averaging out the effects of all 

other predictors in the model (N=number of records in training data):

 𝐹𝑆 (𝒛𝑠) =
1

𝑁
 

𝑖=1

𝑁

 𝑓 (𝒛𝑠, 𝒛𝑖,𝑐)

Partial Dependence Plots
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How do we get that from a "black box"? 

We can use the black box to extract a predicted response based on any input. 

We vary 𝒛𝑠 on a grid of values while averaging across empirically observed values of all remaining 

variables 𝒛𝑐, i.e.,

obtain predictions for (𝒛𝑠, 𝒛𝑛,𝑐) from the estimated learner and average across all 𝒛𝑛,𝑐 in training data. 

This produces the marginal averaged response value for any desired input 𝒛𝑠

R package “pdp” provides an efficient implementation for up to 3-dimentional PDPs for many types of 

models, including random forest and boosted trees.

Partial Dependence Plots
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Partial Dependence Plots – “pdp” Package

R package “pdp”

# Function to compute mean of predicted values in a specified dataset (to obtain plots on the probability scale)

pred.prob<-function(object, newdata){

pred<-predict(object,newdata=newdata,type="prob")

mean(unlist(lapply(pred, function(x) return(x[2]))))

}

partial(crf,pred.var=myvars, pred.fun=pred.prob, plot=TRUE, rug=TRUE, recursive = FALSE)

Specify one variable (e.g., “ETHNIC”) or 

a list (e.g., c(“BLDIABP”, “BLEGFR”))
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Partial Dependence Plots for Example Dataset

- Derived from cforest

Ethnicity History of Obesity Diastolic Blood Pressure

Probability of [potentially avoidable dropout = yes] 



56

Partial Dependence Plots for Example Dataset

- Derived from cforest

History of Neuropathy



57

 15% potentially avoidable dropout

Considered 14 potential baseline predictors with 105 potential interactions

 Stepwise selection with logistic regression retained too many variables (39) to be useful, difficult to 

rank them in terms of importance

 Lasso also retained too many variables (64 on average), but gave some indication of the variable 

ordering. History of obesity, ethnicity. race, diastolic blood pressure, and history of neuropathy were at 

the top.

Using ML methods, especially random forest with conditional trees, allowed us to explore a relative 

measure of variable importance, conditional VI being most sophisticated. 

Global null test suggested that there were important predictors.

The most important variables were: ethnicity, history of obesity, and history of neuropathy.

Gradient boosting machines allowed us to assess significant interactions

Global null tests suggested that there were significant interactions.

E.g., baseline diastolic blood pressure interacted with several other predictors.

 Partial dependence plots allowed us to visualize the associations and to assess the impact of 

important predictors on the probability of potentially avoidable dropout as well as approximate cut-off 

points for continuous predictors.

Summary of What We Learned for Example Dataset
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 Based on what we learned, a targeted retention strategy may be directed towards 

Patients of Hispanic or Latino ethnicity, 

Patients with history of obesity, 

Patients with normal baseline diastolic pressure, especially with

 abnormal baseline EGFR values

 high baseline fasting plasma glucose

 no history of neuropathy

(Note: our example dataset is patterned after real-world studies, but not real-world data).

Would also be useful to assess a potential impact on power using simulations and given the primary 

estimand and analysis method.

Summary of What We Learned for Example Dataset
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Unintentional decrease in future recruitment of subjects with a high-risk drop-out profile

 In some indications / endpoints, retention efforts directed to a subgroup of subjects may bias the 

endpoint outcome, e.g., in depression trials, increased subject support may influence depression 

rating in the supported subgroup

Reasons for drop-out may change over time depending on external factors / current standard of care

 Important to continuously monitor dropout rates/reasons and adjust initially designed retention 

strategies as needed.

Proactive Retention Strategies - Caveats
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Conclusions: Team Work for Better Clinical Trials

Clinical + statistical + operations + management team members should work together to:

 Learn from patterns of drop-out / missingness in previous trials

Design trials that encourage subjects to stay all the way through without compromising wellbeing

 Statistical and machine learning methods useful in determining important predictors of potentially 

avoidable dropout

Develop (targeted) retention strategies for future studies

 Promote awareness among colleagues, investigators, and site staff
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Questions ? Thoughts?

Bohdana.Ratitch@quintiles.com

Ilya.lipkovich@quintiles.com

Thank You!
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